Building Innovation Ecosystem - Accelerating Technology Commercialization and Cultivating Entrepreneurship

> Grace Wang Deputy Assistant Director for Engineering National Science Foundation

Oct. 8, 2015

Definition of Innovation

"Innovation is the creation and delivery of surprising new knowledge, (products and services) that have sustainable value for society."

- Curtis Carlson

Myth: A Linear Innovation Model? Product/service Technology Industry Academe/ Research Marketplace Institutions Tax Investment Tax Government

Innovation Ecosystem

- Stakeholders
- Innovation infrastructure and culture
- Partnerships and technology/talent flow

- Living organismsEnvironment
- Links

Building Innovation Ecosystem

Be catalysts

Enabling innovation infrastructure and culture for value-added partnerships and technology/talent flow

Building Innovation Infrastructure

- Engineering Research Centers (ERC)
 - System-level engineering research
 - Transformative engineering research to enable new industries
- Industry/University Cooperative research Centers (I/UCRC)
 - Pre-competitive industry-inspired research consortia

ERC (Research) Strategic Framework

8

NSF's FY 2015 Engineering Research Centers (Lead institutions)

Note: All centers are multi-university partnerships; university shown is lead institution.

New ERC Solicitation (NSF 15-589)

What is the compelling new idea and how does it relate to national needs?

> Why is a center necessary to tackle the idea?

How will the ERC's infrastructure integrate and implement research, workforce development and innovation ecosystem development efforts to achieve its vision?

October 12, 2015

Industry/University Cooperative Research Centers (I/UCRC)

I/UCRC Impact vs. Investment: Examples

Each dollar invested by NSF-I/UCRC generated an estimated \$64 in impacts.

IUCRC investments & Impacts	IMS	BSAC	CPaSS
Estimated impacts (present value)	\$846 M	\$410 M	\$9 M
Total investments (present value)	\$3 M	\$13 M	\$3 M
Benefit: Cost Ratio	270:1	31:1	3:1
Net Present Value	\$843M	\$ 397 M	\$6M

IMS: Intelligent Maintenance Systems (2001) CPaSS: Center for Particulates & Surfactants (1998) BSAC: Berkeley Sensors and Actuators Center (1986)

Cultivating Innovation Culture and Entrepreneurship

Grant Opportunities for Academic Liaison with Industry (GOALI)

Co-funding opportunity

Industrial scientists and engineers to universities Faculty, postdoctoral fellows, and students to industry Universityindustry teams to conduct joint research projects

Accelerating Innovation Research (AIR)

Require lineage to previously NSF-funded basic research awards

Proofs-of-concept and/or pre-commercial prototypes
 Promote entrepreneurial thinking among faculty and students

- **TECHNOLOGY TRANSLATION (TT) (NSF 15-570)**
 - Single investigators
 - ✓ \$200k/1.5 years

Building Innovation Capacity (BIC)

Platform technologies to enable human-centered and market-driven "smart" service systems

Academe-industry partnerships required

- Industry contribution of market knowledge to ensure relevance
- Social behavioral and/or cognitive science component required to understand the potential interaction of the technology with users
- Up to \$1 M for 3 years (NSF 15-610)

Innovation Corps (I-Corps)

>Why I-Corps?

Capitalize on previously NSF-funded basic research
 Cultivate entrepreneurial culture

I-Corps approach

- "Lean Launchpad" curriculum
- Team: PI + Entrepreneurial Lead + Business Mentor
- Experiential entrepreneurial education

Building a National Innovation Network

I-Corps[™] Nodes I-Corps[™] Sites I-Corps[™] Mentors

I-Corps™ Mentors

I-Corps™ Teams

36 sites

Extensive mentor network (200+)

Supported more than 500 teams; 261 startups were established

Small Business Innovation Research (SBIR) & Small Business Technology Transfer (STTR)

Seeking high-risk, high-payback innovations with high commercialization potential

Invest in for-profit small businesses

Strong Ties to Universities

≻STTR

✓ Subcontract to universities is mandatory
 ✓ Strongly encourages NSF funding lineage

Phase I:
 STTR \$225K, 12 months
 SBIR: \$225K, 6-12 months

Phase II
SBIR/STTR: \$750K, 2 years

Inclusive Topic Areas

- Educational Technologies and Applications (EA)
- Information and Communication Technologies (IC)
- Semiconductors (S) and Photonic (PH) Devices and Materials
- Electronic Hardware, Robotics and Wireless Technologies (EW)
- Advanced Manufacturing and Nanotechnology (MN)
- Advanced Materials and Instrumentation (MI)
- Chemical and Environmental Technologies (CT)
- Biological Technologies (BT)
- Smart Health (SH) and Biomedical (BM) Technologies

Encourage Fundraising from Private Sectors - *Help mitigate financing risk*

Phase IIB supplement

✓ Match 50% of third-party investment up to \$500k

- Third-party investment that SBIR/STTR Phase II grantees collectively raised
 - ✓\$78 million in FY2012
 - ✓\$83 million in FY2013

19 acquisitions in last 2 years for an estimated over \$600 million acquisition value

Cultivating Entrepreneurship

Launched SBIR "Beat The Odds" Boot-Camp

- Focusing on customer discovery and understanding market needs
- Overwhelmingly positive feedback
- SBIR/STTR Grantees Conferences
 - Focus on entrepreneurial education

Looking Back and Looking into the Future...

Of \$65 billion total in U.S. university R&D expenditures in FY2011*

>4.9%, or \$3.2 billion, was funded by businesses

U.S. large R&D Companies**

Funding to universities represents less than 1% of company R&D spending in 2010

Need to integrate industry-inspired basic research into universities' mission

*Source: National Science Foundation's Higher Education Research and Development (HERD) Survey **SOURCE: National Science Foundation, National Center for Science and Engineering Statistics and U.S. Census Bureau, Business R&D and Innovation Survey, 2010.

Need new ways of seeing IP value

> 16 universities took 70% of total licensing income of the university system in 2012

Over the last 20 years, on average, 87% of technology transfer offices did not break even

Source: University Start-Ups: Critical for Improving Technology Transfer (Brookings, Nov. 2013)

THE FUTURE OF EMPLOYMENT: HOW SUSCEPTIBLE ARE JOBS TO COMPUTERISATION?

Osborne and Frey, 2013, Oxford University "... about 47 percent of total US employment is at risk."

How to prepare our students for such a future?

For Startups,

A smaller share of U.S. businesses are new companies...

Share of companies founded in past five years

How to continuously cultivate an innovative and risk-taking culture?

Source: Commerce Department's Business Dynamics Statistics

Encourage industry-inspired basic research

Explore new IP practices

Stimulate innovative education models

Cultivate entrepreneurship

It is all about infrastructure and culture

