Artificial Intelligence @ NIST and Collaboration Roadmap for AI-powered Moonshots

Michael Garris

Senior Scientist National Institute of Standards and Technology

What is AI?

- Think and act like humans
- Think and act rationally
- Sometimes mutually exclusive. 🙂
- AI Problem Space Categories
 - Knowledge Representation
 - Perception
 - Logical Reasoning
 - Planning and Navigation
 - Prediction

What is AI?

- Field of Study
- Technology
 - System
 - Characteristic

Al Conceptualization (1 of 3)

Al Conceptualization (2 of 3)

Al Conceptualization (3 of 3)

	Narrow AI	General AI	
0	Application specific/ task limited	 Perform general (human) intelligent action 	
0	Fixed domain models provided by programmers	 Self-learns and reasons with its operating environment 	
0	Learns from thousands of labeled examples	 Learns from few examples and/or from unstructured data 	m
0	Reflexive tasks with no understanding	 Full range of human cognitive abilities 	5
0	Knowledge does not transfer to other domains or tasks	 Leverages knowledge transfer to new domains and tasks 	
0	Today's Al	• Future AI?	

New Wave of Al

- Availability of Big Data
- Improved Machine Learning (ML) Algorithms
- More Powerful Computing
- Mobile Connectivity

ML/AI for ...

- Classification
- Function Approximation
- Prediction
- Control
- Simulation
- Anomaly Detection

ML/AI Challenges

- Probabilistic
 - With inherent error rates and uncertainty
- Data Driven
 - With vulnerability to learning unwanted patterns of bias
- Extreme Dimensionality
 - Making decisions opaque (little explainability)
- Model Validation
 - Bound performance
 - Account for unforeseen outliers
 - How good is good enough?
 - Now introduce dynamic / continuous learning!?*

NIST Mission (Al's Impact)

To promote U.S. <u>innovation</u> and <u>industrial</u> <u>competitiveness</u> by advancing <u>measurement</u> <u>science, standards, and technology</u> in ways that <u>enhance economic security</u> and <u>improve our</u> <u>quality of life</u>.

NIST

TRUSTWORTHY AI

Application

<u>IOT</u> <u>Robotics</u> <u>Material Science</u> <u>Smart Manufacturing</u> Biomedical Imaging

eployment

MEASURES & STANDARDS

Investigation

TRUSTWORTHY AI

MEASURES & STANDARDS

Investigation

Topics @ NIST (relating to AI/ML)

AI/ML Foundations Improving ML Knowledge Management Ontologies Visualization Datasets & Data Management Image Understanding **Biomedical Biometrics** Neutron Radiation Information Search & Summarization Internet of Things & Cyber Physical Systems Materials Science & Discovery Natural Language Processing

Neuromorphic Design Quantum AI/ML **Robotics** Agility Collaboration Security and Privacy Smart Manufacturing Spectrum Standardization Training (staff) Trustworthiness Bias Methods & Metrics Validation

(PAUSE FOR QUESTIONS)

Next Collaboration Roadmap for Al-powered Moonshots

Michael Garris mgarris@nist.gov